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1. Motivation - modular curves

Let H = {z ∈ C : im z > 0} be the complex upper half plane. It admits a
natural action of GL+

2 (R). For a discrete subgroup Γ ≤ GL+
2 (R) we can consider the

quotient YΓ = Γ\H, which admits a natural compactification XΓ = YΓ ∪{Γ\P1(Q)}.
As an example, if Γ = SL2(Z) = GL+

2 (Z), then Γ\H is the well-known fundamental
domain D (draw), and XΓ is isomorphic to the Riemann sphere P1(C). In this case,
XΓ parametrizes isomorphism classes of elliptic curves (or of homothety classes of
lattices), through the map

τ 7→ Λτ = Z · τ + Z · 1 7→ Eτ = C/Λτ .

More generally, if Γ is a congruence subgroup, XΓ is a Riemann surface, parametrizing
isomorphism classes of elliptic curves with additional data. In fact, XΓ admits the
structure of an algebraic curve over a number field, and questions about elliptic
curves translate to studying the properties of these modular curves.

Important examples include X0(N) = XΓ0(N) parametrizing elliptic curves with
a cyclic N -isogeny, and X1(N) = XΓ1(N) parametrizing elliptic curves with an N -
torsion point.

From the genus of a modular curve, using Faltings’s theorem, we can deduce that
if g(XΓ) > 1, there are finitely many rational points on XΓ, corresponding to finitely
many elliptic curves with this level structure (e.g. elliptic curves with rational N -
torsion), and if g(XΓ) = 0 and XΓ has a point, then there are infinitely many such.
An example application is Mazur’s celebrated theorem on the classification of rational
torsion on elliptic curves.

Recently, due to advances in algorithms for computing equations for these curves
XΓ, there has been a systematic effort to create a database of these modular curves.
(reference beta version of the LMFDB).

In a similar vein, one can consider moduli spaces of abelian surfaces with (poten-
tial) QM, which also form curves, and study their geometry. This leads to correspond-
ing results, as in recent work of Laga-Schembri-Shnidman-Voight (2023) classifying
possible torsion on such surfaces.
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2. Hilbert modular varieties

This generalizes (in more than one way) to higher dimensions. One way is to
consider a totally real number field F of degree n, with ring of integers ZF , and the
group GL+

2 (F ) of matrices with totally positive determinant. Then through its n real
embeddings, this group acts on Hn. Again, by considering a discrete subgroup Γ, we
may form the quotient Γ\Hn, and compactify it by adjoining the cusps Γ\P1(F ) ↪→
P1(R)n, to obtain a compact Hilbert modular variety YΓ = (Γ\Hn)∗.

Trying to generalize the standard example from before, we already run into several
differences from the modular curve case.

2.1. Choice of arithmetic subgroup. The first is that SL2(ZF ) 6= GL+
2 (ZF ), as

there are non-trivial totally positive units in our field. In fact, if Z×F,>0 6= Z×2
F , then

even PSL2(ZF ) 6= PGL+
2 (ZF ), yielding different quotients of Hn.

Example 2.1. Let F = Q(
√

3). Then Z×F = {±1} × εZ, where ε = 2 −
√

3 ∈ Z×F,>0

is totally positive. In particular, the matrix(
ε 0
0 1

)
∈ GL+

2 (ZF )

maps to an element in PGL+
2 (ZF ), which is not in the image of SL2(ZF ).

2.2. Moduli space. The second concerns the moduli interpretation. Given a point
τ = (τ1, . . . , τn) ∈ Hn, we may consider the lattice

Λτ = ZF · τ + ZF · 1 = {(a1τ1 + b1, . . . , anτn + bn) : a, b ∈ ZF} ⊆ Cn,

where a1, . . . , an and b1, . . . , bn are images of a, b, respectively, under the the different
real embeddings. Then Aτ = Cn/Λτ is a complex torus, with real multiplication by
ZF through the diagonal map. Recall that a complex torus is an abelian variety if
and only if it admits an ample line bundle (equivalently, a polarization), and line
bundles on Aτ (through their Chern classes) are in bijection with Riemann forms on
Cn with respect to Λτ . Any such form which is F -linear must be of the form

Hr,τ (x, y) =
∑ xiyiri

im τi
, r ∈ d−1

F ,

and it is positive definite (corresponds to an ample line bundle) if and only if r is
totally positive. Therefore GL+

2 (ZF )\Hn parametrizes isomorphism classes of abelian
surfaces with real multiplication by ZF and polarization cone d−1

F,>0. If we wish to
parametrize all abelian surfaces with real multiplication by ZF , (and allow for other
polarizations), we really should be asking more generally about groups of the form
GL+(ZF ⊕ b), where b is a fractional ideal of ZF . Since multiplying by a totally
positive element does not change the isomorphism class, b could be taken from a set
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of representatives of the narrow class group. We could also specify the polarization,
which amounts to considering SL2 instead of GL+

2 .

Example 2.2. Continue with F = Q(
√

3). As Cl+(F ) ' Z/2Z, with representatives
being ZF , p3 = (

√
3), the moduli space of (isomorphism classes of) abelian varieties

with real multiplication by
√

3 has two components, X(ZF )ZF
= GL+

2 (ZF )\H2 and
X(ZF )p3 = GL+(ZF⊕p3)\H2 corresponding to the two possible polarization modules.
Note that the latter corresponds to the polarization module being ZF , hence the
component of principally polarizable abelian varieties with real multiplication by√

3. (This one could also be identified with GL+
2 (ZF )\(H+ ×H−)). Looking at the

SL2 variants we obtain the moduli space of principally polarized abelian varieties
with real multiplication by

√
3 (equipped with the polarization).

2.3. Singularities. The third is that these surfaces are singular at cusps and elliptic
points (as these are ”codimension n corners”). Looking at the smallest example, we
focus on the case n = 2. Then there exists a minimal desingularization of the complex
surface YΓ, which we denote by XΓ. Hirzebruch (1970’s), with collaborators (Van der
Geer, Van de Ven, Zagier among others) investigated the Hilbert modular surfaces
SL(ZF ⊕ b)\H2 and constructed a resolution of singularities at the cusps and at the
elliptic points of these surfaces X1(ZF )b.

But what replaces the genus now that we have a surface?

3. Geometric invariants of surfaces

If X is a smooth complex projective surface, it has non-trivial cohomology in
degrees 0 ≤ r ≤ 4, the dimension of the different cohomology spaces are called the
Betti numbers bi = dimH i(X,C). Moreover, since X is a compact Kähler manifold,
by Hodge theorem, the cohomology admits a further Hodge decomposition

Hr(X,C) =
⊕
p+q=r

Hp,q(X,C),

where the components are the (p, q)-forms on X, of dimension hp,q. Serre duality (in
this case, basically Poincare duality) yields hn−p,n−q = hp,q, and Hodge symmetry
(symmetry under conjugation) yields hp,q = hq,p, yielding a Hodge diamond. (do I
really want to draw?) From the Hodge diamond, we can compute other important
invariants, such as

• The geometric genus pg = h0,2.
• The holomorphic Euler characteristic χ = χ(OX) = h0,0 − h0,1 + h0,2.
• The (topological) Euler number e(X) = c2(X) =

∑
(−1)rbr.

• K2, the self-intersection number of the canonical bundle, which is related
through Noether’s formula to χ = K2+e

12
.
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For a (connected) Hilbert modular surface, one can show that h(1,0) = 0, by
showing that there are no Hilbert modular forms of weight (2, 0), and h0,0 = 1,
so the Hodge diamond degenerates (draw on previous Hodge diamond), so that
h(2,0) = χ − 1, and e − 2 = b2 = 2h(2,0) + h(1,1), so the Hodge diamond can be
computed completely from knowing e and K2.

Summing up many works of many people in the 1970’s and 1980’s of the previous
century, we have the following theorem.

Theorem 3.1 (Hirzebruch, Zagier, van der Geer, 1987). There is an (effective)

algorithm to compute K2(Ỹ 1(ZF )) and e(Ỹ 1(ZF )). Only finitely many of these sur-
faces are not of general type and these are completely classified (Enriques-Kodaira
classification).

For an integral ideal N ⊆ ZF , we may consider congruence subgroups Γ(N),Γ0(N),Γ1(N)
as before.

Remark 3.2. For modularity applications, we are especially interested in Γ0(N) (or
Γ1

0(N)) level structure, as under an expected generalization of Serre’s conjecture and
a special case of the absolute Hodge conjecture, we expect that Hilbert eigenforms
of level Γ0(N) will correspond to abelian varieties over F of conductor N. One can
see its relevance by looking at some recent works.

• Used in [Dasgupta, Kakde 2022], On the Brumer-Stark conjecture, proving
it (and in fact Rubin’s higher rank version of it) away from p = 2, leading to
the resolution of the Gross-Stark conjecture.
• Used in [Loeffler, Zerbes 2020], Iwasawa theory for quadratic Hilbert modular

forms, proving the main conjecture over the cyclotomic Zp-extension.

Remark 3.3. In some sense, this is ”simply taking quotients”. And yet, these
specific quotients have special structure, allowing us to obtain nice formulas resulting
from some beautiful math, same as in the modular curve case. Chai, in 1990, already
found it missing - ”Unfortunately, there is no good compactification theory forM0(f)
(= X0(N)).... but they do some messy things over the supersingular locus of M.”

Theorem 3.4 (A., Babei, Breen, Costa, Duque-Rosero, Horawa, Kieffer, Kulkarni,
Molnar, Schiavone, Voight, 2023). There exists an (effective) algorithm to compute
the Hodge diamond of X0(N)b, X1(N)b, X

1
0 (N)b and X1

1 (N)b.

Other than handling different types of congruences subgroup, this also automates
the part of comparison between the resolution of singularities and the minimal sur-
face. We build on that to obtain the following two theorems as well.

Theorem 3.5 (Us). Only finitely many of the Hilbert modular surfaces X0(N)b are
not of general type. We list their Enriques-Kodaira classification*.
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Previous to this, other than the work of van der Geer (1987), there were some
previous results of Hamahata (1994), classifying some of these surfaces with pg ≤ 1

for F = Q(
√

2) and Q(
√
p) where p ≡ 1 mod 4.

Theorem 3.6 (Us). There is an (effective) algorithm to compute equations for the
surfaces Y ∗0 (N)b.

This last theorem vastly generalizes past works which mainly focused on describing
equations for trivial level, even until recent years.

• In [Hirzebruch, Hirzebruch-Zagier, van der Geer, up to 1987], equations for
trivial level for some quadratic fields.
• In [Elkies-Kumar, 2014] constructed equations for rational and K3 Hilbert

modular surfaces as double covers of the corresponding Humbert surfaces.
• In [Williams, 2020] constructed equations for Hilbert modular surfaces for

some specific fields (disc 29, 37) using Borcherds products.

These have uses, e.g. in the recent work of [Cowan-Martin, 2022], constructing the
moduli space of rational genus 2 curves with RM, but also in arithmetic statistics,
as in [Cowan-Martin, 2023], counting abelian surfaces with RM and modular forms
with small rationality fields.

4. Cusps and stabilizers

4.1. cusp enumeration. We use work of Dasgupta-Kakde (2021) to enumerate the
cusps. If (a : c) ∈ P1(F ) represents a cusp, one notes that I = I(a, c) = aZF + cZF is
a representative of a well-defined class in Cl(F ), and that M = M(a, c) = N + cI−1

is a well-defined integral ideal dividing N. Write (I/IM)× for the set of generators
of I/IM as a ZF/M-module, and consider the orbits under the action of the squares
of units Z×2

F to get the set A. Similarly, starting with (IM/IN)×, we obtain the set
of orbits C. We then have

Theorem 4.1. There is a natural bijection Γ0(N)\(F 2 \ {0})→ P0(N), where

P0(N) = {(I,M, a, c) : M | N, (a, c) ∈ (A× C)/(ZF/N)×},
with the action on A× C being the anti-diagonal action.

This yields an effective algorithm to enumerate the cusps.

Example 4.2. Let F = Q(
√

3) and p3 = (
√

3), so we consider cusps in X1
0 (p3). Note

that Cl(F ) = {1} is trivial, so we may assume I = ZF . Since N = p3 is prime, it
has only two divisors - M = p3 or M = ZF . Since ZF/p3 ' F3, and ε2 ≡ 1 mod p3,
it follows that in the first case A = {±1} and C is trivial, and vice versa in the
second case. Finally the anti-diagonal action of (ZF/p3)× on A × C identifies the
two elements, so we get exactly two different cusps. It is immediate to see that 0, ∞
are representatives for the cusps.
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We then need to resolve the singularity at the cusps.

4.2. Cusp resolution. For that we need to understand the local behavior near the
cusp, i.e. to compute the stabilizer in Γ0(N) of the cusp. We will see that in the
case of Γ0(N), the stabilizer is conjugate to a group of the form

G(M,V ) =

(
V M
0 1

)
,

where V ⊆ Z×F,>0 is a group of totally positive units, and M ⊆ F is an abelian group
of rank 2 such that VM = M . In this case, we say that the cusp is of type G(M,V ).

Example 4.3. For the cusp at ∞, we see that

Γ∞ =

{(
a b
0 a−1

)
| a ∈ Z×F , b ∈ ZF

}
,

hence up to scalars Γ∞ ' G(ZF ,Z×2
F ).

For the cusp at 0, the matrix σ =

(
0 1
−1 0

)
satisfies σ0 =∞, and

σΓ0σ
−1 =

{(
a b
0 a−1

)
| a ∈ Z×F , b ∈ p3

}
hence up to scalars Γ0 ' G(p3,Z×2

F ).

Given M,V , we may now construct G(M,V )\H2 in two parts. First, we compute
M\H2 by embedding it in the algebraic torus M\C2 ' C××C×. This isomorphism
depends on the choice of basis (explicitly e2πiτ = um1vm2), and these are related
by change of basis diagrams. This then amits a natural compactification inside C2.
Although the module M does not have a canonical basis, analysis of the local ring
at ∞ leads to consider consecutive boundary points on the convex hull of M>0 as
a natural set of bases for M . Denoting these points by {Ak}k∈Z each 2-dimensional
cone σk = {sAk−1 + tAk : s, t ∈ R>0} leads to a copy of C2 with coordinates
uk, vk, which are glued through the change of bases, to form a complex manifold. If
Ak−1 +Ak+1 = bkAk, then the coordinate transformation from σk to σk+1 is given by

(uk+1, vk+1) = (ubkk vk, u
−1
k ).

The coordinate axes give rise to a sequence of non-singular rational curves Sk (defined
by vk = 0 and uk+1 = 0). By constructing appropriate meromorphic functions, one
can show that S2

k = −bk. Finally, the group V is cyclic, acting on M\C2 freely and
discontinuously, turning the above sequence into a cycle.

Example 4.4. (Draw!) We note that the boundary points for ZF,>0 are Ak =

((2 −
√

3)k, (2 +
√

3)k), so that Ak−1 + Ak+1 = 4Ak, and (2 −
√

3)2 ∈ Z×2
F identifies
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Ak with Ak+2 for all k. It follows that there are two curves S0, S1 intersecting at
two points, and each with self-intersection number −4, yielding the cusp resolution
at ∞.

For p3,>0, the boundary points are A0 = (3, 3), A1 = (3 −
√

3, 3 +
√

3), A2 =

(2 −
√

3)A0, so that A−1 + A1 = 2A0, A0 + A2 = 3A1 and (2 −
√

3)Ak = Ak+2, so
there are 4 curves in the resolution cycle with intersection numbers (−2,−3,−2,−3),
yielding the resolution cycle at 0.

This method has been developed by Hirzebruch. Our contribution is determining
the specific M and V for a cusp given as a quadruple (I,M, a, c) as above, and in
the case of Γ1(N), when it is not of this form, use finite quotients to construct the
resolution.

5. Elliptic points and optimal embeddings

In general, a congruence subgroup Γ does not act freely on Hn. The points with
non-trivial finite stabilizers are called elliptic points, and they are cyclic quotient
singularities. Their contribution to the invariants of the surfaces depend only on
a certain invariant associated to such a point, which is called a rotation factor.
Therefore, unlike the case for cusps, our goal will be only to count the number of
elliptic points having a certain rotation factor.

Let τ = (τ1, . . . , τn) ∈ Hn be an elliptic point, whose stabilizer is generated by
γ ∈ Γ, and let tr(γ) = t and det(γ) = u, so that γ2 − tγ + u = 0, and t2 − 4u is
totally negative. This already restricts us to finally many possibilities for t and u.

Example 5.1. In our running example we have u = 1 (since γ ∈ SL2(Z)) and
t2 − 4� 0 means that t ∈ {0,±1,±

√
3}.

The transformation z 7→ (z−τ)/(z−τ) maps τ to 0, and transforms γ to a rotation
τ 7→ ζτ = (ζ1τ1, . . . , ζnτn), so each ζi is a primitive root of unity with the same order
as γ.

Definition 5.2. We call ζ the rotation factor of τ .

If τ ′ is another fixed point with conjugate stabilizer β−1γβ, then its rotation factor
satisfies ζ ′ = ζsgn(det(β)). In particular, they have the same rotation factor if and only
if det(β) > 0 is totally positive.

In order to count elliptic points, we use the observation that they correspond to
embeddings of quadratic orders in quaternion orders. Indeed, let O be the order
generated by Γ in M2(ZF ). If γ ∈ Γ is an elliptic element, then K = F (γ) is a
quadratic CM extension, and S = ZF [γ] ⊆ K is an order, so γ induces an embbeding
of S = ZF [γ] into the order O and vice versa. If two such embeddings are conjugate
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in Γ, then their images fix the same elliptic point, so we only count these up to
conjugation.

The elliptic condition ensures that there are only finitely many orders that we need
consider. In order to count the number of embeddings φ : S ↪→ O, we count them
by the image S ′ = φ−1(φ(K) ∩ O), so that S ′ ↪→ O is optimally embedded.

The nice thing about optimal embeddings is that this is a local property, so we
can compute the number of embeddings adelically.

Example 5.3. In our running example, for an embedding into O0(p3) to exist, a
necessary condition is that there is a solution to x2 − tx + 1 = 0 in ZF/p3 ' F3.
Therefore, we rule out t = 0, t = ±

√
3, and remain with t = ±1. For example,

consider t = −1, so γ is a root of x2+x+1, i.e. γ = ζ3. ThenK = F (ζ3) = Q(
√

3, i) =
Q(ζ12), and S = ZF [ζ3] = ZF +

√
3ZK (Here ZK = Z[ζ3, i] = ZF [i] = Z[ζ12]), so S

is an order of prime conductor p3, hence any embedding of S is either an optimal
embedding of S or of ZK . But i ∈ ZK does not embed into O (no elliptic points
of order 2), so we only need to count optimal embeddings of S. From the fact that
there is exactly one solution to x2 + x+ 1 ≡ 0 mod p3, and that it lifts to a solution
modulo p2

3 = 3ZF , we see that there are 2 optimal embeddings up to conjugation (a
normalized one, and its conjugate by wp3). The same works for t = 1, showing that
there are exactly 4 elliptic points, all of them of order 3.

In order to count the elliptic points with a specific rotation factor, we introduce a
notion of orientation for an embedding. We choose a fixed embedding K ↪→M2(F ),
so that any other embedding is conjugate by some β ∈ GL2(F ), and we say that φβ
is oriented if det(β) > 0 is totally positive.

In order to understand the number of (conjugacy classes) of optimal embed-
dings φ : S ↪→ O of each rotation factor (corresponding to sgn(det(β)), we use a
local-global principle for embeddings, and swap the roles of S and O - instead of
moving S an see how it fits into O, we fix S and move O inside its genus. Let
E = {β ∈ B× : Kβ ∩ O = Sβ}. Then K×\E/Γ is in bijection with Emb(S,O; Γ).

We can also form the adelic analogue Ê, and the totally positive analog E+. If
O′ ∈ GenO is obtained by conjugation by ν̂, then using strong approximation, one

can show that Emb+(S,O′) 6= ∅ if and only if nrd(ν̂) ∈ F×>0 nrd(Ê). Since it contains
all the norms of elements from K, by class field theory, this is a subgroup of order

at most 2 inside F̂×. Some algebra shows that the relevant group obstructing the

existence of an oriented embedding is GN+(O) = F×>0 det(N(Ô)), and then we may
form the Oriented Optimal Selectivity criterion (OOS) - K is a subfield of the corre-
sponding class field HGN+(O). If (OOS) does not hold, then there is no obstruction,
and S embeds into all orders in the genus. In particular, all signs occur for every
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rotation factor. Otherwise, only half of them occur, and we can figure out which by
considering the action of Frobenius.

For Eichler orders, such as O0(N), we have an even simpler statement for (OOS):
K/F is unramified at all finite places and for every p | N with ordp(N) odd, p splits
in K.

Theorem 5.4 (Oriented Optimal Selectivity, Us). Let O be an Eichler order. Then

(1) GenO is orientedly optimally selective for S if and only if (OOS) holds.
(2) If (OOS) holds, then Emb+(S,O′) 6= ∅ for precisely half the types [O′] ∈

Typ+O]. More precisely, if [O′] ↔ [b] ∈ Cl+(R), then Emb+(S,O′) 6= ∅ if
and only if Frobb ∈ Gal(K/F ) is trivial.

(3) In all cases, m(S,O′;O×>0) = m(S,O;O×>0) for all O′ ∈ GenO whenever both
sides are nonzero.

Corollary 5.5. Let K/F be a CM extension, and S ⊆ K an R-order. Let γ ∈ S×
be such that γR× ∈ S×/R× has finite non-trivial order and generates (S×/R×)tor.
Let f be the conductor of S in R[γ]. Then the rotation factors (ζεvv ) which occur for
fixed points of optimal embeddings of S into O0(N)b are exactly those with∏

v

εv =

(
K

fb

)
.

Example 5.6. In our running example, K is the narrow (ray) class field of F ,
hence unramified at all finite places. However, the prime p3 which appears with
odd valuation is inert in K, therefore (OOS) fails, showing that all possible rotation
factors occur equally. Therefore, we have two elliptic points of type (3; 1, 1) and two
elliptic points of type (3; 2, 1).

It is also possible to resolve the singularities at the elliptic points, which are cyclic
quotient singularities, by considering the local ring around a cyclic quotient.

Example 5.7. For an elliptic point of type (3; 1, 1) the resolution is a single (-3)-
curve C, whose local canonical divisor is KC = 1

3
C. For a point of type (3; 2, 1) the

resolution consists of two (-2)-curves, with trivial local canonical divisor.

6. Hirzebruch-Zagier divisors

Given all the data of the cusp resolutions and elliptic points, including rotation
factors, we are able to compute the Euler number e and the self-intersection number
K2 using formulas originally by van der Geer. Explicitly:

K2 = 2 vol(Γ\H2) +
∑

(2− bk) +
∑

aq,ζk
2
q,ζ

e = vol(Γ\H2) + `+
∑

aq,ζ

(
`q,ζ +

q − 1

q

)
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Example 6.1. In the example we have vol(Γ0(p3)\H2) = 4
3
, so

e =
4

3
+ 6 + 2

(
1 +

2

3

)
+ 2

(
2 +

2

3

)
= 16

and

K2 =
8

3
+ 2 · 0 + 2 · (−1) + 2 · (−2) + 2 ·

(
−1

3

)
= −4.

We deduce the Hodge diamond - χ = 1, hence pg = 0, and h1,1 = 16.

This is not enough for classification since this surface is not minimal. However, we
can use another idea - Hirzebruch-Zagier divisors. These divisors are modular curves
and Shimura curves that live on our surface (an obvious example is the image of the
diagonal (z, z)). When these are curves with small levels, they are often rational,
leading to exceptional curves that we can blow down.

Example 6.2. Consider F3, the image of (z, 3z) on our surface. A simple calculation
(K · F3 = 4

3
− 2− 1

3
= −1) shows that F3 is a (-1)-curve isomorphic to X0(3), which

intersects the cusp resolutions at the 2 (-2) curves above 0. Blowing it down leads
to a pair of intersecting exceptional curves, showing that our surface is rational. (all
plurigenera vanish - intersect a holomorphic section with C1 + C2).

This should not come as a surprise, given work of Bruin-Flynn-Shnidman (2021)
giving an explicit rational parametrization of genus 2 curves with full

√
3-level struc-

ture on their Jacobians.

7. Summary
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